繁殖技术
繁殖技术 病虫防治 基础文章 杂谈

植物激素(plant hormone,phytohormone)

编辑: 2017-11-15 19:25:54

植物激素是由植物自身代谢产生的一类有机物质(注意:这里说的“植物激素”不是人工合成的,人工合成的叫“植物生长调节剂”),并自产生部位移动到作用部位,在极低浓度下就有明显的生理效应的微量物质,也被称为植物天然激素或植物内源激素。 植物激素(plant hormone,phytohormone)是指植物细胞接受特定环境信号诱导产生的、低浓度时可调节植物生理反应的活性物质。它们在细胞分裂与伸长、组织与器官分化、开花与结实、成熟与衰老、休眠与萌发以及离体组织培养等方面,分别或相互协...

植物激素是由植物自身代谢产生的一类有机物质(注意:这里说的“植物激素”不是人工合成的,人工合成的叫“植物生长调节剂”),并自产生部位移动到作用部位,在极低浓度下就有明显的生理效应的微量物质,也被称为植物天然激素或植物内源激素。

植物激素(plant hormone,phytohormone)是指植物细胞接受特定环境信号诱导产生的、低浓度时可调节植物生理反应的活性物质。它们在细胞分裂与伸长、组织与器官分化、开花与结实、成熟与衰老、休眠与萌发以及离体组织培养等方面,分别或相互协调地调控植物的生长、发育与分化。这种调节的灵活性和多样性,可通过使用外源激素或人工合成植物生长调节剂的浓度与配比变化,进而改变内源激素水平与平衡来实现。


目前已被人们熟知的植物激素主要有五类:①生长素 ②赤霉素 ③细胞分裂素 ④乙烯 ⑤脱落酸 ⑥其他激素

 

生长素

生长素(auxin)是一类含有一个不饱和芳香族环和一个乙酸侧链的内源激素,英文简称IAA,国际通用,是吲哚乙酸(IAA)。4-氯-IAA、5-羟-IAA、萘乙酸(NAA)、吲哚丁酸等为类生长素。1872年波兰园艺学家谢连斯基对根尖控制根伸长区生长作了研究 ;后来达尔文父子对草的胚芽鞘向光性进行了研究。1928年温特证实了胚芽的尖端确实产生了某种物质,能够控制胚芽生长。1934年,凯格等人从一些植物中分离出了这种物质并命名它为吲哚乙酸,因而习惯上常把吲哚乙酸作为生长素的同义词。

吲哚乙酸的纯品为白色结晶,难溶于水。易溶于乙醇、乙醚等有机溶剂。在光下易被氧化而变为玫瑰红色,生理活性也降低。植物体内的吲哚乙酸有呈自由状态的,也有呈结合(被束缚)状态的。后者多是酯的或肽的复合物。植物体内自由态吲哚乙酸的含量很低,每千克鲜重约为1-100微克,因存在部位及组织种类而异,生长旺盛的组织或器官如生长点、花粉中的含量较多。

生长素的降解,最明显的是在光下很容易发生光氧化而被破坏。汤玉玮和J.邦纳于1947年发现植物组织中有些氧化酶能降解吲哚乙酸,称为吲哚乙酸氧化酶。

生长素的生理作用:

生长素最明显的作用是促进生长,但对茎、芽、根生长的促进作用因浓度而异。三者的最适浓度是茎>芽>根,大约分别为每升10E-5摩尔、10E-8摩尔、10E-10摩尔。植物体内吲哚乙酸的运转方向表现明显的极性,主要是由上而下。植物生长中抑制腋芽生长的顶端优势,与吲哚乙酸的极性运输及分布有密切关系。生长素还有促进愈伤组织形成和诱导生根的作用。

生长素有多方面的生理效应,这与其浓度有关。低浓度时可以促进生长,高浓度时则会抑制生长,甚至使植物死亡,这种抑制作用与其能否诱导乙烯的形成有关。

生长素的生理效应表现在两个层次上:

1、在细胞水平上,生长素可刺激形成层细胞分裂;刺激枝的细胞伸长、抑制根细胞生长;促进木质部、韧皮部细胞分化,促进插条发根、调节愈伤组织的形态建成。(晕了,暂时没看懂,难道说的是不通浓度的情况下??)

2、在器官和整株水平上,生长素从幼苗到果实成熟都起作用。生长素控制幼苗中胚轴伸长的可逆性红光抑制;当吲哚乙酸转移至枝条下侧即产生枝条的向地性;当吲哚乙酸转移至枝条的背光侧即产生枝条的向光性;吲哚乙酸造成顶端优势;延缓叶片衰老;施于叶片的生长素抑制脱落,而施于离层近轴端的生长素促进脱落;生长素促进开花,诱导单性果实的发育,延迟果实成熟。


生长素对生长的促进作用主要是促进细胞的生长,特别是细胞的伸长。植物感受光刺激的部位是在茎的尖端,但弯曲的部位是在尖端的下面一段,这是因为尖端的下面一段细胞正在生长伸长,是对生长素最敏感的时期,所以生长素对其生长的影响最大。趋于衰老的组织生长素是不起作用的。生长素能够促进果实的发育和扦插的枝条生根的原因是:生长素能够改变植物体内的营养物质分配,在生长素分布较丰富的部分,得到的营养物质就多,形成分配中心。生长素能够诱导无籽番茄的形成就是因为用生长素处理没有受粉的番茄花蕾后,番茄花蕾的子房就成了营养物质的分配中心,叶片进行光合作用制造的养料就源源不断地运到子房中,子房就发育了。

生长素的两重性

较低浓度促进生长,较高浓度抑制生长。植物不同的器官对生长素最适浓度的要求是不同的。根的最适浓度约为10^(-10)mol/L,芽的最适浓度约为10^(-8)mol/L,茎的最适浓度约为10^(-4)mol/L。在生产上常常用生长素的类似物(如萘乙酸、2,4-D等)来调节植物的生长如生产豆芽菜时就是用适宜茎生长的浓度来处理豆芽,结果根和芽都受到抑制,而下胚轴发育成的茎很发达。植物茎生长的顶端优势是由植物对生长素的运输特点和生长素生理作用的两重性两个因素决定的,植物茎的顶芽是产生生长素最活跃的部位,但顶芽处产生的生长素浓度通过主动运输而不断地运到茎中,所以顶芽本身的生长素浓度是不高的,而在幼茎中的浓度则较高,最适宜于茎的生长,对芽却有抑制作用。越靠近顶芽的位置生长素浓度越高,对侧芽的抑制作用就越强,这就是许多高大植物的树形成宝塔形的原因。但也不是所有的植物都具有强烈的顶端优势,有些灌木类植物顶芽发育了一段时间后就开始退化,甚至萎缩,失去原有的顶端优势,所以灌木的树形是不成宝塔形的。由于高浓度的生长素具有抑制植物生长的作用,所以生产上也可用高浓度的生长素的类似物作除草剂,特别是对双子叶杂草很有效。

生长素类似物:2,4-D,因为生长素在植物体内存在量很少,为了调控植物生长,人们发现了生长素类似物,它们具有和生长素类似的效果而且可以进行量产,现已广泛运用到农业生产中。

注: 双子叶植物比单子叶植物对生长素更敏感,这就是为什么可用高浓度生长素来杀死双子叶杂草而不会伤害单子叶作物的原因。

茎的背地生长和根的向地生长是由地球的引力引起的,原因是地球引力导致生长素分布的不均匀,在茎的近地侧分布多,背地侧分布少。由于茎的生长素最适浓度很高,茎的近地侧生长素多了一些对其有促进作用,所以近地侧生长快于背地侧,保持茎的向上生长;对根而言,由于根的生长素最适浓度很低,近地侧多了一些反而对根细胞的生长具有抑制作用,所以近地侧生长就比背地侧生长慢,保持根的向地性生长。若没有引力,根就不一定往下长了。


生长素的应用:

1、促进生长
生长素(IAA)对营养器官纵向生长有明显的促进作用。如芽、茎、根三种器官,随着浓度升高,器官伸长递增至最大值,此时生长素浓度为最适浓度,超过最适浓度,器官的伸长受到抑制。不同器官的最适浓度不同,茎端最高,芽次之,根最低。由次可知,根对IAA(生长素)最敏感,极低的浓度就可促进根生长,最适浓度为10^-10。茎对IAA敏感程度比根低,最适浓度为10^-5。芽的敏感程度处于茎与根之间,最适浓度约为10^-8。所以能促进主茎生长的浓度往往对侧芽和根生长有抑制作用。

2、促进分化
生长素与细胞分裂素配合能引起细胞分裂,而且生长素也能单独引起细胞分裂。如早春树木形成层细胞恢复分裂活动是由顶芽产生的生长素下运而引起的。

生长素对器官建成的作用最明显的是表现在促进根原基形成及生长上。苗木插枝在其基部产生不定根,对木本植物来说,主要是由新的次生韧皮部组织分化,但也可由其它组织分化形成,如形成层、维管射线及髓部。吲哚丁酸(IBA)在生长素中促进生根的效果最好,在应用方面发现IBA(吲哚丁酸)与萘乙酸(NAA)比吲哚乙酸(IAA)稳定,效果更好。

3、维持优势
正在生长的植物茎端对侧芽的生长有抑制作用,这种现象称为顶端优势。棉花用缩节胺控制顶端生长或打顶后,侧芽大量发生。

4、抑制离区
棉花与果树落花、落果及落叶,是双子叶植物的普遍现象。棉花的蕾铃脱落,与营养物质的供给有关,也与激素水平有关。当蕾铃柄的基部,远轴端生长素含量高,近轴端生长素含量低时,抑制离层内纤维素酶、果胶酶的活性,因而抑制离层细胞的分离,蕾铃不脱落;反之,当近轴端生长素含量高,远轴端生长素含量低时,则使果胶酶和纤维素酶活性提高,促进离层的分离,致使蕾铃脱落。

5、促进结实
植物开花受精之后,子房中的生长素含量提高,从而促进子房及其周围组织的膨大,加速了果实的发育。如雌蕊未经受精而子房能及时获得IAA,也能诱导某些植物无籽果实的形成。如在授粉前用生长素喷或涂于柱头上,不经授粉最终也能发育成单性果实。如胡椒、西瓜、番茄、茄子、冬青、西葫芦和无花果等

6、除草剂
除草剂有两种:1.选择性除草剂,低浓度促进植物生长,高浓度抑制植物生长,对于生长素浓度双子叶植物较单子叶植物更为敏感,因此可作为单子叶植物田中除去双子叶植物的除草剂。2.非选择性除草剂:将所有植物都杀死,例如草甘膦。


吲哚丁酸:
吲哚丁酸简称IBA。纯品为白色或微黄色的晶体,稍有异臭,不溶于水,能够溶于乙醇、丙酮等有机溶剂中。在使用的时候,可以先把它溶解在少量酒精中,然后再加水稀释到所需要的浓度。它主要用于促进植物的插条生根,尤其对生根作用明显。但是,吲哚丁酸诱发出的根细而长,而奈乙酸诱发出的根比较粗壮,因此,生产中常将这两种植物生长调节剂混合使用。

 

 

赤霉素
赤霉素,广泛存在的植物激素。化学结构属于二萜类酸,由四环骨架衍生而得。赤霉素种类至少38种,应用于农业生产,可刺激叶和芽的生长,提高产量。


赤霉素不溶于水,但可溶于酒精。使用时先用少许酒精或高度数的烧酒(如60度白干酒)把它化开,然后再对水稀释到需要浓度


赤霉素功效对作物的有效率是百分之百,效果持久,更高效,更稳定,更安全,幼苗期开始喷施为最佳,可使根系发达,又预防病害,它能显著地促进植物茎、叶生长,如生长期喷施,也可使营养均衡,有助于作物长势,花期喷施,可保花保果、也能使果实膨大、更有美果作用。


赤霉素最突出的生理效应是促进茎的伸长和诱导长日植物在短日条件下抽薹开花。各种植物对赤霉素的敏感程度不同。


赤霉素在种子发芽中起调节作用。许多禾谷类植物例如大麦的种子中的淀粉,在发芽时迅速水解;如果把胚去掉,淀粉就不水解。用赤霉素处理无胚的种子,淀粉就又能水解,证明了赤霉素可以代替胚引起淀粉水解。赤霉素能代替红光促进光敏感植物莴苣种子的发芽和代替胡萝卜开花所需要的春化作用。赤霉素还能引起某些植物单性果实的形成。对某些植物,特别是无籽葡萄品种,在开花时用赤霉素处理,可促进无籽果实的发育。但对某些生理现象有时有抑制作用。


赤霉素最突出的作用是加速细胞的伸长(赤霉素可以提高植物体内生长素的含量,而生长素直接调节细胞的伸长),对细胞的分裂也有促进作用,它可以促进细胞的扩大(但不引起细胞壁的酸化),除此之外,赤霉素还有着抑制成熟,侧芽休眠,衰老,块茎形成的生理作用。


备注:由于赤霉素可刺激叶和芽的生长,因此,在啤酒的主要原料麦芽的生产中,赤霉素被用于提高麦芽出芽率。尚无任何证据证明赤霉素对人体健康有影响,但欧美等国已经对啤酒中的赤霉素含量做了相关规定。以美国为例,规定每升啤酒中的赤霉素含量不得超过2毫克。中国并无相关规定。

 

 

细胞分裂素
细胞分裂素 (cytokinin, CTK)从玉米或其他植物中分离或人工合成的植物激素。一般在植物根部产生,是一类促进胞质分裂的物质,促进多种组织的分化和生长。与植物生长素有协同作用。是调节植物细胞生长和发育的植物激素。在细胞分裂中起活化作用,也包含在细胞生长和分化及其他相关的生理活动过程中,如激动素(KT)、玉米素(ZT)、6-苄基氨基嘌呤(6-BA)等。

细胞分裂素最明显的生理作用有两种:一是促进细胞分裂和调控其分化。在组织培养中,细胞分裂素和生长素的比例影响着植物器官分化,通常比例高时,有利于芽的分化;比例低时,有利于根的分化。二是延缓蛋白质和叶绿素的降解,延迟衰老。

各种细胞分裂素的活性有差异,例如在促进生长的生物试验中,天然的细胞分裂素如玉米素、异戊烯腺嘌呤,比人工合成的细胞分裂素如6-苄基氨基嘌呤和激动素高,而在延缓叶绿素分解的生物试验中,后者活性比前者高。


细胞分裂素的生理作用主要是引起细胞分裂,诱导芽的形成和促进芽的生长。对组织培养的烟草髓或茎切段,细胞分裂素可使已停止分裂的髓细胞重新分裂。这种现象曾被用于细胞分裂素的生物测定。茎切段的分化常受细胞分裂素及生长素比例的调节。当细胞分裂素对生长素的浓度比值高时,可诱导芽的形成;反之则有促进生根的趋势。如对抑制的腋芽局部施用细胞分裂素,可以解除顶端对腋芽的抑制(即顶端优势)。(用在球的刺座上应该会促进侧芽产生)。天然的簇生植物(莲座状植物)或由于病害发生“丛枝病”的植物里,常含有较多的细胞分裂素。细胞分裂素还有防止离体叶片衰老、保绿的作用,这主要是由于细胞分裂素能够延缓叶绿素和蛋白质的降解速度,稳定多聚核糖体(蛋白质高速合成的场所),抑制DNA酶、RNA酶及蛋白酶的活性,保持膜的完整性等。在叶片上局部施用细胞分裂素,能吸聚其他部分的物质向施用处运转和积累,除此之外,细胞分裂素还具有抑制不定根形成和侧根形成,延缓叶片衰老的作用。

除了天然的促进细胞分裂的物质外,还用化学方法人工合成了一些类似激动素的物质。通常也统称细胞分裂素。其中活性较强,也最常用的是6-苄氨基嘌呤。


细胞分裂素可用于蔬菜保鲜,在组织培养工作中细胞分裂素是分化培养基中不可缺少的附加激素。细胞分裂素还可用于果树和蔬菜上,主要作用用于促进细胞扩大,提高坐果率,延缓叶片衰老。主要生产厂家为:四川省兰月科技开发公司,四川国光农化有限公司,郑州中联化工产品有限公司

应用原理

植物细胞分裂素在植物的生长过程中起着极其重要的作用现将其结构和生理特点介绍如下:

一、细胞分裂素的结构、分布与传导
细胞分裂素是一类具有促进细胞分裂及其他生理功能的物质的总称。最早发现的细胞分裂素类的物质,是从酵母细胞提取液中分离出来的DNA降解物,由于它能促进细胞分裂,因此命名为激动素(简称KT),化学名称为N6-呋喃甲基腺嘌呤,它不是植物内源的生长物质。

二、细胞分裂素的生理作用及其应用
1、细胞分裂素的主要作用是促进细胞分裂。细胞分裂素不仅能促进细胞分裂,也可以使细胞体积扩大。但和生长素不同的是,细胞分裂素是通过细胞横向扩大增粗,而不是促进细胞纵向伸长来增大细胞体积的,它对细胞的伸长有一定的抑制效应。
2、延缓植物衰老延缓衰老是细胞分裂素特有的效应。
3、诱导组织和器官的分化生长素和细胞分裂素共同调控着植物器官的分化。试验证明,细胞分裂素有利于芽的分化,而生长素则促进根的分化,当CTK/IAA的比值较大时,主要诱导芽的形成;当CTK/IAA的比值较小时,则有利于根的形成。
4、消除顶端优势:生长素是导致植物顶端优势的主要原因,而细胞分裂素则能消除顶端优势,促进侧芽的迅速生长。在这方面,生长素同细胞分裂素间表现出明显的对抗作用(两者的产生部位与运转方式决定根系与幼芽的生长、分化)。


常用的细胞分裂素主要有6-苄氨基嘌呤、激动素、玉米素等。
脱落酸
脱落酸(abscisic acid,ABA)。一种抑制生长的植物激素,因能促使叶子脱落而得名。可能广泛分布于高等植物。除促使叶子脱落外尚有其他作用,如使芽进入休眠状态、促使马铃薯形成块茎等。对细胞的延长也有抑制作用。1965年证实,脱落素II和休眠素为同一种物质,统一命名为脱落酸。

北京奥运会期间,北京全市的百万盆鲜花,均有施加脱落酸,以保证花盛开的状态。

天然脱落酸与生长素、乙烯、赤霉素、细胞分裂素并列为植物五大激素,它可以提高植物的抗旱和耐盐力,对开发利用中低产田以及植树造林、绿化沙漠等有极高的价值。ABA还是抑制种子萌发的有效抑制剂,因此可以用于种子贮藏,保证种子、果实的贮藏质量。此外,ABA还能引起叶片气孔的迅速关闭,可用于花的保鲜、调节花期、促进生根等,在花卉园艺上有较大的应用价值。对ABA及其应答基因的研究可揭示植物抗逆生理反应的分子过程,从而为定向增强作物对环境的适应力奠定基础。


s-诱抗素

乙烯中国古代就发现将果实放在燃烧香烛的房子里可以促进采摘果实的成熟。19世纪德国人发现在泄露的煤气管道旁的树叶容易脱落。第一个发现植物材料能产生一种气体,并对邻近植物能产生影响的是卡曾斯,他发现橘子产生的气体能催熟与其混装在一起的香蕉。直到1934年甘恩(Gane)才首先证明植物组织确实能产生乙烯。随着气相色谱技术的应用,使乙烯的生物化学和生理学研究方面取得了许多成果,并证明在高等植物的各个部位都能产生乙烯,1966年乙烯被正式确定为植物激素。

乙烯是一种气体激素。成熟的组织释放乙烯较少,而在分生组织,萌发的种子、凋谢的花朵和成熟过程中的果实乙烯的产量较大。它存在于成熟的果实;茎的节;衰老的叶子中。乙烯的产生具有“自促作用”(即乙烯的积累可以刺激更多的乙烯产生)。

植物在干旱、大气污染、机械刺激、化学胁迫、病害等逆境下,体内乙烯成几倍或几十倍的增加,这种在逆境下由植物体产生的乙烯称为应激乙烯或逆境乙烯(lstress ethylene)。


乙烯“三重反应”(triple response of ethylene):①抑制茎的伸长生长;②促进茎和根的增粗;③促进茎的横向增长。用乙烯处理黄化幼苗茎可使茎加粗和叶柄偏上生长。

由于乙烯可以促进RNA和蛋白质的合成,并可在高等植物体内使细胞膜的透性增加,加速呼吸作用,因而当果实中乙烯含量增加时,已合成的生长素又可被植物体内的酶或外界的光所分解,进一步促进其中有机物质的转化,加速成熟。常用乙烯利溶液浸泡未完全成熟的番茄、苹果、梨、香蕉、柿子等果实能显著促进成熟。

乙烯也有促进器官脱落和衰老的作用。乙烯在花、叶和果实的脱落方面起着重要的作用。

乙烯还可促进某些植物(如瓜类)的开花与雌花分化,促进橡胶树、漆树等排出乳汁。

乙烯还可诱导插枝不定根的形成,促进根的生长和分化,打破种子和芽的休眠,诱导次生物质的分泌等。


乙烯是气体,难于在田间应用,直到开发出乙烯利,才为农业提供可实用的乙烯类植物生长调节剂。主要产品有乙烯利、乙烯硅、乙二肟、甲氯硝吡唑、脱叶膦、环己酰亚胺(放线菌酮),它们都能释放出乙烯,或促进植物产生乙烯的植物生长调节剂,所以统称之为乙烯释放剂。目前国内外最为常用的仅是乙烯利,广泛应用于果实催熟、棉花采收前脱叶和促进棉铃开裂吐絮、刺激橡胶乳汁分泌、水稻矮化、增加瓜类雌花及促进菠萝开花等。

返回顶部
COPYRIGHT © 2017-2030 WEBSITE BY YIYO@HUAMENG.CO 粤ICP备14049293号
QQ群
微信号
扫码进店
声明:网站上所有水印没有提示花梦自拍的开花图片均来源于互联网,禁止用于商业用途,使用自拍图片需带上本站水印或征得本站许可。